skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nath, Amit Kumar"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Apache Spark is a popular cluster computing framework for iterative analytics workloads due to its use of Resilient Distributed Datasets (RDDs) to cache data for in-memory processing. We have revealed that the performance of Spark RDD cache can be severely limited if its capacity falls short to the needs of the workloads. In this paper, we have explored different memory hybridization strategies to leverage emergent Non-Volatile Memory (NVM) devices for Spark's RDD cache. We have found that a simple layered hybridization approach does not offer an effective solution. Therefore, we have designed a flat hybridization scheme to leverage NVM for caching RDD blocks, along with several architectural optimizations such as dynamic memory allocation for block unrolling, asynchronous migration with preemption, and opportunistic eviction to disk. We have performed an extensive set of experiments to evaluate the performance of our proposed flat hybridization strategy and found it to be robust in handling different system and NVM characteristics. Our proposed approach uses DRAM for a fraction of the hybrid memory system and yet manages to keep the increase in execution time to be within 10% on average. Moreover, our opportunistic eviction of blocks to disk improves performance by up to 7.5% when utilized alongside the current mechanism. 
    more » « less